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Adsorption and collapse transitions in a linear polymer chain near an attractive wall
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We deduce the qualitative phase diagram of a long flexible neutral polymer chain immersed in a poor solvent
near an attracting surface using phenomenological arguments. The actual positions of the phase boundaries are
estimated numerically from series expansion up to 19 sites of a self-attracting self-avoiding walk in three
dimensions. In two dimensions, we calculate phase boundaries analytically in some cases for a partially
directed model. Both the numerical and analytical results corroborate the proposed qualitative phase diagram.
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I. INTRODUCTION

The behavior of flexible polymers in solution at larg
length scales is independent of the chemical nature of
polymer and the solvent, and these universal scaling pro
ties are well understood in terms of the renormalizat
group approach@1,2#. The polymer chain is known to un
dergo a transition from a random-coil phase to a globu
phase as the temperature or thepH of the solution is varied.
The model of a self-avoiding walk on a lattice with on-s
repulsion and nearest-neighbor attraction provides a sim
model for understanding the collapse transition in polym
@3#.

When the chain interacts with an impenetrable surface
conformational properties are strongly modified@4,5#. Com-
petition between the lower internal energy near an attrac
wall and the higher entropy away from it results in a tran
tion, where for a strongly attractive surface the polym
sticks to the surface, and for weak attraction it stays aw
from the surface. This behavior finds applications in lubric
tion, adhesion, surface protection, etc.@6#.

If there is also self-attraction in the polymer, there is t
possibility of a collapse transition in both the desorbed a
adsorbed states. In addition, there is a surface-attac
globular ~SAG! phase, in which the polymeric globule ge
attached to the attractive surface@7#. In the thermodynamic
limit, the SAG phase has the same free energy per mono
as the bulk globular phase, and the transition between t
is a surface transition. In earlier papers@7,8#, we discussed
the phase diagram in this case, and investigated the p
diagram in a lattice model using extrapolation of exact se
expansions. This scheme has been found to give satisfac
results as it can take into account the corrections to sca
To achieve the same accuracy by the Monte Carlo metho
chain of about two orders of magnitude longer than in
exact enumeration method has to be considered@9#.

In this paper, we show that the qualitative features of
phase diagram in three dimensions can be determined
simple phenomenological arguments. In the case of a
tially directed polymer in two dimensions, we determine t
exact phase diagram of the SAG phase analytically. In
case, the polymer has different behavior depending
1063-651X/2002/65~5!/056124~7!/$20.00 65 0561
e
r-

n

r

le
s

ts

e
-
r
y
-

d
ed

er
m

se
s
ry

g.
, a
e

e
by
r-

is
n

whether it is near the wall perpendicular to the preferr
direction ~SAG1! or the wall parallel to the preferred direc
tion ~SAG2!. We determine the phase boundaries of SA
and SAG2 phases by calculating their orientation depend
surface energy. We also determine the transition betw
SAG1 and SAG2 phases when both walls are present.
also summarize our results of analysis of exact series ex
sion in three dimensions which we have extended by t
more terms.

The paper is organized as follows. Section II contains
definition of the model and of the various phases. In Sec.
we briefly review earlier work before providing argumen
for the qualitative nature of the phase diagram in two a
three dimensions. The phase diagram obtained is comp
with numerical results from series expansion in Sec. IV. S
tion V contains the analytical results obtained for the p
tially directed model.

II. MODEL AND DEFINITIONS

A simple lattice model for a linear polymer in a poo
solvent is a self-avoiding walk~SAW! on a regular lattice
with an attractive interaction energyeu between pairs of sites
of the walk which are unit distance apart but not consecu
along the walk. The adsorbing surface is modeled by restr
ing the walk to lie in a upper half plane and by associating
attractive energyes with each monomer~site of the walk!
lying on the surface. In the partially directed self-avoidin
walk ~PDSAW! in two dimensions, there is an addition
restriction that the walk cannot take steps in the negativx
direction.

We will work with the reduced variablesv5ebes and u
5ebeu, whereb is the inverse temperature. For clarity o
argument, we start by defining the different phases. Cons
a polymer chain consisting ofN monomers, attached to th
attractive surface at one end. Ifes andeu are small in mag-
nitude, the polymer exists in the swollen random-coil pha
away from the surface. In this phase, the mean radius
gyration varies asNn wheren takes the self-avoiding walk
value @n'0.588 in~3D! andn53/4 in 2D#. The number of
monomers in contact with the surface is of order 1 in t
case. We shall call this phase the desorbed extended~DE!
©2002 The American Physical Society24-1
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phase. Ifeu is large andes is small, the polymer exists awa
from the wall as a compact ball of finite density. In this ca
the radius of gyration of the polymer varies asN1/d in d
dimensions. We shall call this phase the desorbed collap
~DC! phase. If the surface attractiones is sufficiently large,
the polymer sticks close to the surface. In this case, a fi
fraction of monomers are on the surface, and the exten
the polymer perpendicular to the surface is finite. Along
surface the polymer roughly acts as a polymer chain ind
21 dimensions. Depending on whether the attractive s
interaction is large or small, the polymer is in a collaps
phase with its transverse size varying asN1/(d21), or in the
extended phase with the transverse size varying asNn8,
wheren8 is the self-avoiding walk exponent ind21 dimen-
sions. We shall call these phases the adsorbed collapsed~AC!
and the adsorbed extended~AE! phases, respectively. In ad
dition to these phases, the polymer may exist as a collap
globule of finite density which sticks to the surface. In th
case, the size of the polymer in the directions transverse
perpendicular to the surface varies asN1/d and the number of
monomers in contact with the surface varies asN(d21)/d. We
shall call this phase the surface-adsorbed globular ph
Note that in two dimensions there is no distinction betwe
the AC and the AE phases.

The polymer undergoes a transition between the exten
and collapsed phases as the temperature is varied. A
transition temperature between the DC and the DE pha
called theu point, the critical behavior is described by
tricritical point of theO(n) (n→0) spin system. At theu
point, Rb;Nnu with nu54/7 for 2D @10# and 1/2 for 3D@1#.
The transition from AE to AC is described bynu correspond-
ing to one lower dimension. In two dimensions, at the m
ticritical point where the DE, DC, and AE phases meet,
geometrical properties of the chain can be related to the
rimeter of percolation clusters near a wall, and hence can
determined exactly@11#.

III. QUALITATIVE PHASE DIAGRAM

First, we briefly review earlier work on this problem. I
one of the earliest papers on the subject, Bouchaud and
nimenus derived the exact phase diagram on a Sierpi
gasket@12#. The phase diagram consisted of the AE, DE, a
DC phases. In@13#, the phase diagram in two dimension
was obtained approximately by series expansions and it
found to be qualitatively similar to that for the gasket. In@7#,
the possibility of the existence of the SAG phase in t
dimensions was discussed based on analysis of series e
sions. Evidence for the existence of a surface transition fr
the SAG to DC phase was also presented. A variant of
model, the PDSAW model in two dimensions, has been m
amenable to analytical calculations. For a PDSAW in t
dimensions, the exact calculation of the phase boundary
tween the collapsed and the extended phases@14–16# was
numerically confirmed in@17#. The phase diagram thus ob
tained is qualitatively similar to that of the undirected tw
dimensional model. In@18#, the existence of the SAG phas
in the PDSAW was suggested based on series expan
analysis.
05612
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The model is less studied in three dimensions. Mo
Carlo simulations@19# and series expansion analysis@8# on
the cubic lattice showed the existence of four phases:
AC, DE, and DC. While@19# claimed the existence of two
multicritical points, the earlier preliminary results@8# ob-
tained from series expansion seemed to support one m
critical point. More careful analysis of the series, report
later in this paper, shows that there are indeed two multic
cal points. The question of whether or not a SAG pha
exists in three-dimensions has not been addressed so
Also, the possibility of surface transitions among the c
lapsed phases has not been explicitly dealt with. Thus
spite of many earlier studies, the qualitative behavior of
system is not fully established.

We now determine the qualitative nature of the phase d
gram from phenomenological considerations. If the wall
repulsive, i.e.,v<1, the polymer will be in the desorbe
state. Asu is increased from 1 tò , the polymer undergoes
a collapse transition from the DE to the DC phase at a crit
value u3D* ~see Fig. 1!. This transition valueu3D* is clearly
independent ofv, and the boundary between the DE and D
phases is vertical. Ifu and w are both near 1, clearly, th
polymer is in the DE phase. Asv is increased from 1 tò
the polymer undergoes a transition from the DE to the
phase. Let this transition occur at a critical curvevc(u) that
intersects thev axis atv* .

Now, consider the case when bothu andv are large. At
T50, the polymer has the density 1, and can be describe
a Hamiltonian walk. The bulk attractive energy per site
2(d21)eu , and there is a surface energy which is eas
seen to bedeuN(d21)/d. Then the free energy of the DC
phase atT50 is

EDC52~d21!euN1deuN(d21)/d. ~1!

In the SAG phase, atT50, the polymer exists as a rectan
gular parallelepiped of sizeL i andL' in directions parallel
and perpendicular to the surface. Its bulk energy is the sa
as in the DC phase and the surface energy is (eu2es)L i

d21

1(d21)euN/L i . Minimizing the surface energy with re
spect toL i , we obtain

FIG. 1. The qualitative phase diagram in three dimensions.
4-2
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ESAG52~d21!euN1deu
(d21)/d~eu2es!

1/dN(d21)/d.
~2!

In the AC phase, we haveL'51, L i5N1/(d21), and the
free energy atT50 is

EAC52~d22!euN2esN1~d21!euN(d22)/(d21). ~3!

Comparing the energies of these phases, we see that the
phase has lower free energy than the DC or the AC pha
for 0<es<eu . Thus the lower and upper boundaries of t
SAG phase~linesvc1 andvc2 in Fig. 1! tend tovc151 and
wc25u for largeu.

If v5`, the polymer is adsorbed onto th
(d21)-dimensional surface. Ind.2, there is a transition
from the AE to the AC phase at the critical value ofu
5ud21* , corresponding to a (d21)-dimensional collapse
Clearly,ud21* .ud* . The partition function, when written as
perturbation series inv21, is

Z~u,v!5Z0~u!vN

3F11
N

v2 S n01
n1

u
1

n2

u2D 1•••G , ~4!

where nj is the fraction of bonds whose end points ha
exactly j nearest-neighbor monomers. We expect thatn0 is
larger in the AE phase as compared to the AC phase, w
n1 and n2 are smaller. Usingn0512n12n2 in Eq. ~4!, it
follows that for large but finitev, the free energy is lower fo
the AE phase. Hence, the phase boundaryvc3 between the
AE and AC phases should curve to the right.

The phase diagram for the two-dimensional problem
qualitatively the same as that of the three-dimensional pr
lem except that there is no AC phase, and hence novc3
phase boundary. We now argue that the phase boundarieuc ,
vc , vc1, andvc2 meet at one point. For the sake of clarit
we will illustrate the arguments for the two-dimension
problem. In the DC and the SAG phases, the polymer
compact two-dimensional object with finite density. We d
fine s(u) as the surface tension between the surface of
object and the liquid, whereu is the angle the surface make
with the horizontal. For a shaper (u), the free energy is a
sum of two terms: the bulk term, which depends onu alone,
and a surface term, which can be written as an integral o
the angle dependents(u).

Near the phase boundaryvc2 separating the AE and th
SAG phases, the shape is highly anisotropic andRs@Rb ,
where Rs and Rb are the extent of the polymer along an
perpendicular to the surface.Rs diverges as we approach th
phase boundary from within the SAG phase. The additio
cost of creating two surfaces of orientationu50 should be
zero. Hence, along the phase boundaryvc2, we have

s~0!1sw50, ~5!

wheresw is the free energy cost per unit length when t
polymer is along the wall. Near the phase boundaryvc1
separating the DC and the SAG phases, the shape o
05612
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SAG is such that the part in contact with the wall has orie
tationu50. Clearly, this configuration becomes unfavorab
in comparison to the DC phase when

s~0!5sw . ~6!

For the DE-DC transition, clearly the surface tension m
vanish at the collapse point. Thus, alonguc we have

s~0!50. ~7!

It is clear that the point corresponding tos(0)5sw50 lies
on all the three lines Eqs.~5!–~7!. It still remains to argue
that vc will also pass through the same point as the ot
phase boundaries. Letu andv be transformed tou8 andv8
under a scale transformation as

u85 f ~u!, ~8!

v85g~u,v!. ~9!

The functionf (u) is independent of the surface parameterv
becauseu is a bulk parameter. There will be three fixe
points for Eq.~8!, namely,u50, u5u* , andu5` whereu*
is the only repulsive fixed point. Consider Eq.~9! whenu is
fixed at each of its three fixed points. In the simplest s
nario, for each value ofu, there will be three fixed points o
Eq. ~9!. The schematic diagram showing the renormalizat
group flows between these nine fixed points is shown in F
2. The attractive fixed pointsA1 , A2 , C1, andC2 correspond
to the four phases. The fixed pointsA, B1 , C, andB2 corre-
spond to the four critical phases corresponding to the ph
boundaries and the pointB corresponds to the repulsive mu
ticritical point.

IV. SERIES EXPANSION RESULTS

We enumerated all SAWs up to a certain length on
cubic lattice in which the first site of the walk lies at th
origin and all sites are confined to the half planey>0. Let
CN(Ns ,Nu) be the number of SAWs ofN sites havingNs

FIG. 2. The schematic flow diagram in two dimensions.
4-3
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monomers ony50 andNu nearest-neighbor monomer pair
In @8#, we reported the enumeration and analysis of the se
CN(Ns ,Nu) up to N517 for the cubic lattice. We have now
extended the series for three-dimensions by two terms
reanalyzed the data to obtain a better estimate of the p
boundaries.

For fixedu, we identify the position of the phase boun
ary separating the desorbed phase from the adsorbed o
tached phases as that value ofv at which ]^Ns&/]es is a
maximum. Figure 3 shows the variation of]^Ns&/]es for two
values ofu for N519.

For fixedv, we identify the position of the phase boun
ary separating the extended phase from the collapsed p
as that value ofu at which]^Nu&/]eu is a maximum. Figure
4 shows the variation of]^Nu&/]eu for two values ofv for
N519.

The values ofu3 D* and v* obtained by this method ar
2.00 and 1.49, respectively. The previous results wereu3 D*
51.76 by the series expansion method@8# andv* 51.45 by
the Monte Carlo method@20# and v* 51.5 by the series
expansion method@21#. It is possible to obtain better est
mates ofu3D* as well as the phase boundaries by extrapo
ing for largeN. Let

ZN~v,u!5 (
Ns ,Nu

CN~Ns ,Nu!vNsuNu ~10!

be the partition function. Then, the reduced free energy
monomer can be written as

G~v,u!5 lim
N→`

1

N
ln ZN~v,u!. ~11!

We refer to@7,8# for details of the methods used for extrap
lating to largeN in Eq. ~11!. The phase boundaries are th
found from the maxima of]2G(v,u)/]es

2 (5]^Ns&/]es)
and]2G(v,u)/]eu

2 (5]^Nu&/]eu).

FIG. 3. The dependence of]^Ns&/]es on v. Foru52.0, there is
only one peak corresponding to the DE to AE transition. Fou
53.5, there are two peaks corresponding to the DC to SAG to
transitions.
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Using the above method, we obtainu3D* 51.76 andv*
51.48, which accord fairly well with the previously obtaine
results. The phase diagram obtained from series ana
agrees qualitatively with the phase diagram proposed in S
III ~see Fig. 1!.

V. ANALYTIC CALCULATION FOR THE
TWO-DIMENSIONAL DIRECTED POLYMER

In this section, we analytically determine the pha
boundary separating the SAG phase from the DC and
phases in the PDSAW model. We do so by calculating
macroscopic shape of the collapsed phases at low temp
tures. At zero temperature, it is easy to see that the confi
rational energy of the polymer is minimized if it assumes
square shape of sizeAN3AN. For small nonzero tempera
tures, the polymer assumes a shape that is slightly pertu
from this zero temperature square shape. We will derive
effective surface energy for these fluctuations in Sec. V
Using these results, we determine the shapes of SAG1
SAG2 phases in Sec. V B. In Sec. V C, we calculate
phase boundary between the various phases.

A. Effective surface energy

For the directed polymer in the collapsed or SAG pha
the density in the bulk is exactly 1 and the configuration
‘‘frozen.’’ Only the position of the boundary can change,
there is some fluctuation of height allowed at the bounda
Thus f bulk(SAG)5 f bulk(DC)52eu , independent of v.
Consider a polymer shape as shown in Fig. 5. The energ
the configuration is

E52euN1
eu

2
~a11a212b!1

eu

2 (
j 50

b22

uyj 122yj u.

~12!

By a redefinition ofE, we drop the bulk term proportional to
N. The shape of the polymer is determined by the rest of

C

FIG. 4. The dependence of]^Nu&/]eu on u. For v52.0 there is
only one peak corresponding to the DE to DC transition. Forv
53.8, there are two peaks corresponding to the AE to AC to S
transitions.
4-4
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terms which are all proportional toAN. We replace the terms
under the summation by an integral over an effective ori
tation dependent surface energyf (u), whereu is the angle
the surface makes with the horizontal. In this case, it
straightforward to calculatef (u). Consider all possible walks
with an average slope tan(u)5y/x. Then, the sum over al
weighted paths is

e2bxsec(u) f (u)5 (
y1 , . . . ,yx

dS (
i 51

x

yi2yD)
i 51

x

puyi u, ~13!

wherep5e2beu/2 and d is the usual Kronecker delta func
tion. Taking the Laplace transform with respect toy, we ob-
tain independent summations overyi . These are easily done
giving

f ~u!5
1

b Fsinu ln~z0!1
cosu

2
ln

~z02p!~12pz0!

z0~12p2!
G ,

~14!

where

z05
~11p2!tanu1A~12p2!2 tan2u1p2

p~112 tanu!
. ~15!

We also need to calculate the energy costsw of adsorbing
onto the wall unit length of the polymer. For SAG1, it
trivially equal tosw152es . We calculatesw2 for SAG2 by
the transfer matrix method. Ifc i denotes they coordinate of
the lowest portion of the polymer at sitei, then the weight of
obtaining c i 12 from c i is ^c i uTuc i 12&5@11(v2

21)dc i 12 ,0#u2uc i2c i 12u/2. By trying out an ansatzc l5a l

FIG. 5. Schematic diagram of a partially directed polymer
T*0.
05612
-

s

1dl,0c0 for the eigenfunction, it is not difficult to verify tha
the largest eigenvalue of the transfer matrixT is

L5
v2~v221!~u21!

v2~u21!2u
. ~16!

Then,sw252 ln(L)/(2b). Clearly, asu→`, sw2 has the
correct limit 2es .

B. Calculation of the macroscopic shape

In this subsection we describe the shape determined
minimizing the surface energy of the collapsed phas
Given the expression for the temperature and orientation
pendentf (u), and also the value of surface energy of t
polymer attached to the wall, it is straightforward to det
mine the globular shape that minimizes the surface ene
given a fixed volume. This is the classical Wulff constru
tion. The result is that the macroscopic shape of the polym
is given by

e2bly5c2eblx~12pc1e2blx!~c1e2blx2p!, ~17!

where the two constantsc1 and c2 are fixed by the two
boundary conditions. The Lagrange multiplierl is deter-
mined by the constraint that the total area under the curve
N. The constantsc1 and c2 are now varied to obtain the
shape with the lowest surface energy.

We briefly describe the calculation ofc1 and c2 for
SAG1. The corresponding calculation for SAG2 is a straig
forward generalization and we omit the details. Let the m
roscopic shape of SAG1 have linear extenta andb in the two
directions~see Fig. 6!. The two constantsc1 and c2 in Eq.
~17! are fixed by the two boundary conditionsy(0)5a/2 and
y(b)50. Let g5exp(bla) andh5exp(2blb). Then,

g5
~12pc1!~c12p!

c2
, ~18!

h5
~12pc1h!~c1h2p!

c2
, ~19!

whereh and g are functions of onlyc1 and c2. We fix the
Lagrange multiplierl by the constraint that*0

bydx5N/2.
We obtainl as a function ofc1 andc2 as

r

FIG. 6. Schematic diagram of the macroscopic shapes of SA
and SAG2.
4-5
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b2l2N5E
0

2 ln(h)

dz ln
~12pc1e2z!~c1e2z2p!ez

c2
.

~20!

We also require the integral of the surface free energy al
the curvey(x). Using Eqs.~17!, ~14!, and~15!, we obtain

F5
ln~h!

2b2l
ln

~u21!c1

c2u
2

ln~g!

2b2l
ln c11lN, ~21!

whereF is the total surface energy along the curve.
The total surface energy for SAG1 may be obtained fr

Eq. ~12! to which the energy gain of attaching to the wall h
been added. Then from Eqs.~12! and ~21! we obtain

E5
ln~h!

2b2l
ln

~u21!c1

c2u2
1

ln~g!

2b2l

Au

c1v
1lN. ~22!

We now minimizeE with respect to the variablesc1 andc2.
Differentiating with respect toc1 andc2 and simplifying, we
obtain

05 ln
Au

c1v F1

g

dg

dc1
2

ln~g!

l

dl

dc1
G

1 ln
~u21!c1

c2u2 F1

h

dh

dc1
2

ln~h!

l

dl

dc1
G , ~23!

and

05 ln
Au

c1v F1

g

dg

dc2
2

ln~g!

l

dl

dc2
G

1 ln
~u21!c1

c2u2 F1

h

dh

dc2
2

ln~h!

l

dl

dc2
G . ~24!

The solution of Eqs.~23! and ~24! is ln@Au/(c1v)#50 and
ln@(u21)c1 /(c2u2)#50, implying

c15
Au

v
, ~25!

c25
u21

vu3/2
. ~26!

The calculation for SAG2 proceeds on similar lines e
cept for the fact that the shape consists of one extra segm
Figure 7 shows the shape of the SAG polymer for differ
values ofv. All the shapes lie on top of each other if w
scale the coordinates asX5blx andY5bly.

C. Phase diagram

We calculate the phase diagram for the directed polym
from Eqs.~5!–~7!. These equations give most of the pha
boundaries except the transitions involving SAG1. This
because the shape in contact with the surface does not
orientationu50. This anomaly arises due to the constra
05612
g
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of directedness. The surface transition from SAG1 to SA
is one in which the globule would have lower free energy
attached to thex wall rather than they wall.

Transition from DC to DE(uc). The critical valueuc is
obtained from Eq.~7!, i.e,s(0)50. This is equivalent to the
2 f (0)1eu50. Substituting forf (0), weobtain

Au21

Au11
5

1

u
, ~27!

which has the solution

uc53.382 98 . . . . ~28!

Note that this result matches exactly with the result for
DC-DE transition obtained by the transfer matrix meth
@14–16#.

Transition from SAG1 to AE(vc2). This phase boundary
is determined by equating the coefficient ofN1/d in the per-
pendicular extent of the polymer in the SAG1 phase to ze
Using Eqs.~19!, ~25!, and~26! and settingh51, we obtain
the phase boundary

vc25
11u21A~11u2!224u3

2u
. ~29!

This solution has a natural boundary atu5uc at which value
the expression under the square root sign becomes equ
zero.

Transition from SAG1 to DC(vc1). The transition from
SAG1 to DC occurs when the energy cost of creating a gl
ule sticking to the wall becomes equal to the energy of a
polymer. This can be determined by setting the linear ext

FIG. 7. The shape of SAG polymer is shown for different valu
of v when u is kept fixed at 10.0. The position of the wall i
denoted by a dotted line~vertical for SAG1 and horizontal for
SAG2!. The shape of SAG1 corresponds to the part of the cu
from the wall to the right, while the shape of SAG2 corresponds
part of the curve above the wall.
4-6



a
e
ve

n
es

-
al
lle

G
e

a

G2.
rm
or it

nd
ob-
sed

a
l.

by

W

ADSORPTION AND COLLAPSE TRANSITIONS IN A . . . PHYSICAL REVIEW E65 056124
of SAG1 along the wall to zero. Using Eqs.~18!, ~25!, and
~26! and settingg51, we obtain the phase boundary

vc1~u!5
11u22A~11u2!224u3

2u
. ~30!

Previous analytical studies on the PDSAW@14–16# con-
sidered the case when the wall was only along thex direc-
tion. The results obtained above for SAG1 are for a w
along they direction. While the numerical values for th
phase boundary differ, the phase diagrams are qualitati
similar.

Transition from SAG2 to AE(vc2). From Eq. ~5!, the
phase boundaryvc2 is given bys(0)1sw50. Substituting
the values of the surface energies and solving forv, we
obtain

vc2
2 5

a1Aa224u3

2~11Au!
, ~31!

wherea511Au2u21u5/2. The phase boundaryvc2 has a
natural boundary atu5uc , at which value the expressio
under the square root sign becomes equal to zero. The r
differs from the transfer matrix result@14–16#, vc25(u
11)/21A(u211)224u3/2(u21). However, this discrep
ancy is solely due to the fact that we consider only one w
while the transfer matrix approach required two para
walls. This corresponds to changing Eq.~5! to 2sw21eu
50.

Transition from SAG2 to DC(vc1). From Eq. ~6!, this
transition occurs whens(0)5sw . The resulting equation
can be solved to obtain

vc1
2 5

Au

Au21
. ~32!

This covers all the transitions when we consider SA
and SAG2 separately. But if we consider the scenario wh
05612
ll

ly

ult

l,
l

1
re

the possibility of both SAG’s are allowed, then there is
surface transition from one to the other whenu and v are
varied.

Transition from SAG1 to SAG2. This transition is deter-
mined by equating the surface energies of SAG1 and SA
However, it turns out that we cannot obtain a closed fo
expression for the phase boundary. Instead, we solved f
numerically usingMATHEMATICA .

In Fig. 8, we plot the phase diagram when both SAG1 a
SAG2 are allowed to exist. Note that the phase diagram
tained is qualitatively similar to the phase diagram propo
in Sec. III. The additional transition between the SAG’s is
consequence of the directed nature of the PDSAW mode
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FIG. 8. The phase diagram for the two-dimensional PDSA
model. The DE-AE phase boundary is schematic.
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